Jaan vain kokemukseni antaakseni teille k?sityksen pelaamistamme peleist? ja ohjelmistojen eritt?in mukavista s??nn?ist?!
Tilanteen yhteenveto:
Pelasin 112 kierrosta 0,10 eurolla kappale.
Sain vastineeksi 0,00 €.
Pelasin Volcano Coinia Tortuga Casinolla (lisensoitu Cura?aolla).
Onko t?m? matemaattisesti mahdollista?
Kohtuullinen oletus: voittoprosentti = 25 %
Jopa eritt?in volatiilien kolikkopelien voittoprosentti kierrosta kohden on usein noin 20–30 %, mik? tarkoittaa:
Yksi nelj?st? py?r?ytyksest? antaa ainakin pienen voiton (jopa 0,02 € tai "valevoiton").
Todenn?k?isyyslaskenta
Jos yhden py?r?ytyksen tappion todenn?k?isyys on 75 %, niin 112 per?kk?isen h?vi?misen todenn?k?isyys on:
P=(0,75)112≈2,3×10?14P = (0,75)^{112} \noin 2,3 \times 10^{-14}P=(0,75)112≈2,3×10?14Se on noin 1/43 689 143 880 000 (noin 43 biljoonaa).
?? Vaikka arvio olisi pessimistinen?
Jos oletamme eritt?in alhaisen 15 %:n voittoprosentin (eli 0,85:n todenn?k?isyyden h?vit? jokainen py?r?ytys):
P=(0,85)112≈7,2×10?9P = (0,85)^{112} \noin 7,2 \times 10^{-9}P=(0,85)112≈7,2×10?9Se on noin 1/138 miljoonaa.
?? Matemaattinen johtop??t?s:
Jopa eritt?in ep?suotuisalla arviolla t?m? lopputulos on tilastollisesti l?hes mahdoton todella reilulla peliautomaatilla.
Mit? mielt? te olette t?st?, kun n?ytt?? silt?, ??ett? n?it? pelintarjoajia suojelevat sek? s??ntelyviranomaiset ett? kasinot!
I an just sharing my experience to give you an idea on the games we play and the very nice regulations done on the softwares!
Recap of the situation:
i played 112 spins at €0.10 each.
i received €0.00 in return.
i played Volcano Coin on Tortuga Casino (licensed in Cura?ao).
Is this mathematically possible?
Reasonable assumption: win rate = 25%
Even a highly volatile slot often has a win rate per spin of around 20% to 30%, meaning:
1 out of 4 spins gives at least a small win (even €0.02 or a "fake win").
Probability Calculation
If the probability of not winning on a single spin is 75%, then the probability of losing 112 times in a row is:
P=(0.75)112≈2.3×10?14P = (0.75)^{112} \approx 2.3 \times 10^{-14}P=(0.75)112≈2.3×10?14That’s about 1 in 43,689,143,880,000 (roughly 43 trillion).
?? Even with a pessimistic estimate?
If we assume a very low win rate of 15% (so a 0.85 chance of losing each spin):
P=(0.85)112≈7.2×10?9P = (0.85)^{112} \approx 7.2 \times 10^{-9}P=(0.85)112≈7.2×10?9That’s about 1 in 138 million.
?? Mathematical Conclusion:
Even with a very unfavorable estimate, this outcome is statistically almost impossible on a truly fair slot machine.
what do you guys think of this as it seems these gaming providers are protected by both regulators and casinos!